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Abstract

Purpose – To study the steady magnetohydrodynamic (MHD) flow of a viscous, Newtonian and
electrically conducting fluid over a rotating infinite disk with slip boundary condition.

Design/methodology/approach – The governing equations, which are partial and coupled, are
transformed to ordinary ones by utilizing the similarity variables introduced by Karman and the
resulting equation system is solved by using differential transform method.

Findings – It is observed that both the slip factor and the magnetic flux decrease the velocity in all
directions and thicken the thermal boundary layer.

Originality/value – This paper studies the combined effects of slip and magnetic flux to the flow
and thermal fields over a rotating single free disk in an ambient fluid, which were never studied
together before.
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1. Introduction
The flow due to rotating disks is of great interest in many practical and engineering
aspects. Mainly, the requirement for high temperatures in the turbine stage of a gas
turbine engine to achieve high thermal efficiencies, the cooling of the air is essential to
ensure long lifetime for turbine disks and blades. It is vital to know how the flow and
the thermal fields are at every stage for a safe and effective work life, in the operation of
the rotary type machine systems. For an accurate determination of temperature
distribution, the flow field must be solved as precisely as possible. Since the governing
equations, namely the momentum equations, are highly nonlinear and coupled, it is
hard to obtain exact analytical solutions for the full problem.

Von Karman (1921), in his pioneering work, discovered the self-similar behavior of
the flow over a single free disk and solved the resulting ordinary differential equation
system by using an approximate integral method. Later, Cochran (1934) obtained more
accurate results by using a Taylor series expansion near the disk, matched with a
series solution involving exponentially decaying functions far from the disk at a
suitable mid point. Benton (1966) improved Cochran’s solutions and solved the problem
for the unsteady case. The problem of heat transfer was first considered by Millsaps
and Pohlhausen (1952) for the values of Prandtl number (Pr) between 0.5 and 10. Later,
Sparrow and Gregg (1959) extended this work for a range of 0:1 , Pr , 100 by
neglecting the dissipative terms in the energy equation.

The problem still attracts the attention of researchers from various disciplines, since
rotary type flow has many applications in different fields. In more recent studies, the
problem is solved for special cases such as presence of second grade (Ariel, 1997),
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power law (Andersson and de Korte, 2002) or electrically conducting fluids in MHD
flow (Takhar et al., 2002) and the cases of suction or injection (Attia, 1998).

Magnetohydrodynamics (MHDs) can be interpreted as a theory of the macroscopic
interaction of electrically conducting fluids and electromagnetic fields. Its applications
arise in astronomy, space physics and geophysics as well as in connection with many
other engineering problems, such as liquid-metal cooling of nuclear reactors,
electromagnetic casting of metals, MHD power generation and MHD ion propulsion.
Mainly, the most important part of liquid-metal studies is to control the flow of metallic
melts since numerous metallurgical processes are governed by MHD effects resulting
from the macroscopic interaction of liquid metals with applied or induced currents,
electric and magnetic fields.

In this study, the similarity variables introduced by Von Karman (1921) are used
with a coordinate stretching technique to solve the set of nonlinear differential
equations that define the character of the flow field, in a bounded domain. The
resulting differential equation system is solved by differential transform method
(DTM). This method was introduced by Zhou (1986) in a study about electrical circuits.
It is a semi analytical-numerical technique depending on Taylor series and is
promising for the solution of various types of differential equations. With this
technique, it is possible to obtain highly accurate results or exact solutions for the
differential or integro-differential equation considered (Ayaz, 2004; Arikoglu, 2005).

2. Differential transform method
The differential transform of the kth derivative of an analytical function f ðxÞ of one
variable at x ¼ x0 is as follows:

FðkÞ ¼
1

k!

dkf ðxÞ

dxk

� �
x¼x0

ð1Þ

and the inverse transformation is defined as:

f ðxÞ ¼
X1
k¼0

FðkÞðx2 x0Þ
k ð2Þ

Theorems to be used in the transformation procedure, which can be easily evaluated
from equations (1) and (2), are given below:

Theorem 1. If f ðxÞ ¼ gðxÞ^ hðxÞ; then FðkÞ ¼ GðkÞ^ H ðkÞ:
Theorem 2. If f ðxÞ ¼ cgðxÞ; then FðkÞ ¼ cGðkÞ; where c is a constant.
Theorem 3. If

f ðxÞ ¼
dngðxÞ

dxn
;

then

FðkÞ ¼
ðkþ nÞ!

k!
Gðkþ nÞ:
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Theorem 4. If f ðxÞ ¼ gðxÞhðxÞ; then

FðkÞ ¼
Xk

l¼0

Gðl ÞH ðk2 l Þ:

Theorem 5. If f ðxÞ ¼ xn; then FðkÞ ¼ dðk2 nÞ; where d is the dirac-delta function
that is defined by:

dðk2 nÞ ¼
1 k ¼ n

0 k – n

(

3. Theoretical model
For the MHD flow of an electrically conducting fluid, the conservation of momentum in
r, z and u directions, the continuity equation and the energy equation, by neglecting the
dissipation terms, for steady, incompressible and axially symmetrical case can be
written as follows:

u
›u

›r
þ w

›u

›z
2

v2

r
þ

sB2
0

r
uþ

1

r

›p

›r
¼ n

›2u

›r 2
þ

1

r

›u

›r
2

u

r 2
þ

›2u

›z 2

� �
ð3aÞ
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0
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þ
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›z 2

� �
ð3bÞ
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� �
ð3cÞ

›ðruÞ
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þ

›ðrwÞ
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¼ 0 ð3dÞ

rcp u
›t

›r
þ w

›t

›z

� �
2 k

›2t

›z 2
¼ 0 ð3eÞ

where, u is the radial, v is the circumferential and w is the axial component of the
velocity, B0 is the magnetic flux density, s is the electrical conductivity, t is
the temperature, p is the pressure, n is the kinematic viscosity, r is the density, cp is the
constant pressure specific heat and k is the thermal conductivity.

When the mean free path of the fluid particles is comparable to the characteristic
dimensions of the flow field domain, Navier-Stokes equations break down since the
assumption of continuum media fails. In the range 0:1 , Kn , 10 of Knudsen
Number, the high order continuum equations, e.g. Burnett equations should be used.
For the range of 0:1 . Kn . 0:001; no-slip boundary conditions can not be used and
should be replaced with the following expression (Gad-el-Hak, 1999):
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Ut ¼
2 2 h

h
l
›Ut

›n
ð4Þ

where Ut is the tangent velocity, n is the normal direction to the wall, h is the
tangential momentum accommodation coefficient and l is the mean free path. For
Kn , 0:001; the no-slip boundary condition is valid, therefore, the velocity at the
surface is equal to zero. In this study the slip and the no-slip regimes of the Knudsen
number that lies in the range 0:1 . Kn . 0 is considered. By using equation (4), the
boundary conditions are introduced as follows:

u ¼
2 2 h

h
l
›u

›z
; v ¼ rVþ

2 2 h

h
l
›v

›z
; w ¼ 0 at z ¼ 0 ð5aÞ

u! 0; v! 0 as z!1 ð5bÞ

where V is the angular velocity of the rotating disk. Following Von Karman (1921),
we introduce the similarity variables:

u ¼ VrFðzÞ; v ¼ VrGðzÞ; w ¼
ffiffiffiffiffiffiffi
Vn

p
H ðzÞ; p ¼ 2rVnPðzÞ ð6Þ

where z ¼ z
ffiffiffiffiffiffiffiffiffi
V=n

p
is the dimensionless coordinate in axial direction. By using

equation (6), the governing equations given in (3(a))-(3(d)) simplify to the following
ordinary, coupled and nonlinear set of differential equations:

F 00 ¼ HF 0 þ F 2 2 G 2 þ bF ð7aÞ

G00 ¼ HG0 þ 2FGþ bG ð7bÞ

P 0 ¼ HH 0 2 H 00 ð7cÞ

H 0 ¼ 22F ð7dÞ

where b ¼ sB2
0=rV is the magnetic interaction number, which represents the ratio

between the magnetic force to the fluid inertia force. By assuming that temperature is a
function of the axial coordinate only and introducing the dimensionless temperature as
TðzÞ ¼ ðt 2 t1Þ=ðt0 2 t1Þ; where t0 ¼ tð0Þ and t1 ¼ tð1Þ; the energy equation given
in (3(e)) reduces to:

T 00 ¼ Pr HT 0 ð8Þ

where Pr is the Prandtl number. The boundary conditions for TðzÞ are given below:

Tð0Þ ¼ 1; Tð1Þ ¼ 0 ð9Þ

By integrating equation (8) with the condition at z ¼ 0; TðzÞ can be evaluated in terms
of the axial part of the velocity field as follows:

TðzÞ ¼ T 0ð0Þ

Z z

0

e
Pr
R y

0
H ðxÞdx

dyþ 1 ð10Þ
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The value of T 0ð0Þ is obtained from the far field boundary condition given in equation
(9) as follows:

T 0ð0Þ ¼
21R1

0 e
Pr
R y

0
H ðxÞdx

dy
ð11Þ

The boundary conditions given in equations (5(a) and 5(b)) are expressed in terms of
the similarity variables, given in equation (6), as follows:

Fð0Þ ¼ gF 0ð0Þ; Gð0Þ ¼ 1 þ gG0ð0Þ; H ð0Þ ¼ 0 ð12aÞ

Fð1Þ ¼ 0; Gð1Þ ¼ 0 ð12bÞ

where g ¼ ½ð2 2 hÞlV1=2�=hn 1=2 is the slip factor. Since DTM is based on Taylor
series expansion, the problem essentially requires the matching of two series for the
inner and the outer regions of the infinite domain. Solution of such a system of
equations requires more effort and computer time, so that we introduce the following
coordinate transformation and the dependent variables to solve the problem in a
bounded domain:

j ¼ a2z ð13Þ

FðzÞ ¼ log2ðaÞf ðjÞ; GðzÞ ¼ log2ðaÞgðjÞ; H ðzÞ ¼ logðaÞhðjÞ ð14Þ

where a is an arbitrary number. Then, equations (7(a)-7(d)) may be written as follows:

j 2f 00 ¼ f 2 2 g 2 2 jhf 0 2 jf 0 þ af ð15aÞ

j 2g00 ¼ 2fg 2 jhg0 2 jg0 þ ag ð15bÞ

2f ¼ jh0 ð15cÞ

where a ¼ b=log2a: The boundary conditions given in equations (12(a) and 12(b))
become:

f ð1Þ ¼ 2g logðaÞf 0ð1Þ; gð1Þ ¼ log22ðaÞ2 g logðaÞg0ð1Þ; hð1Þ ¼ 0 ð16aÞ

f ð0Þ ¼ 0; gð0Þ ¼ 0; hð0Þ ¼ a2 1 ð16bÞ

4. The solution
To solve the equation system (15(a)-(c)) with the conditions (16(a) and (b)), we apply
DTM at the point j ¼ 0: By using the theorems 1-5, the following recurrence relations
are obtained from equations (15(a)-15(c)):

ðk 2 2 aÞ ~FðkÞ2
Xk

l¼0

~Fðl Þ ~Fðk2 l Þ þ
Xk
l¼0

~Gðl Þ ~Gðk2 l Þ þ
Xk

l¼0

l ~Fðl Þ ~Hðk2 l Þ ¼ 0 ð17aÞ

HFF
16,2

176



ðk 2 2 aÞ ~GðkÞ2 2
Xk

l¼0

~Fðl Þ ~Gðk2 l Þ þ
Xk

l¼0

l ~Gðl Þ ~Hðk2 l Þ ¼ 0 ð17bÞ

2 ~FðkÞ2 k ~HðkÞ ¼ 0 ð17cÞ

where k $ 2 and ~FðkÞ; ~GðkÞ and ~HðkÞ denote the differential transform of f ðjÞ; gðjÞ and
hðjÞ; respectively. The boundary conditions in equation (16(b)) are transformed as
follows:

~Fð0Þ ¼ 0; ~Fð1Þ ¼ f 1; ~Gð0Þ ¼ 0; ~Gð1Þ ¼ g1; ~Hð0Þ ¼ a2 1 ð18Þ

where f 1 and g1 denote to f 0ð0Þ and g0ð0Þ; respectively. By using the recurrence
relations (17(a)-17(c)) and the transformed boundary conditions in equation (18), ~FðkÞ;
~GðkÞ and ~HðkÞ are evaluated in terms of f 1; g1 and a for k ¼ 2; 3; . . . ;N : Following
this, the series solutions are obtained from:

f ðjÞ ¼
XN
k¼0

~FðkÞj k; gðjÞ ¼
XN
k¼0

~GðkÞj k; hðjÞ ¼
XN
k¼0

~HðkÞj k ð19Þ

Then, by using the boundary conditions given in equation (16(a)) for j ¼ 1; we
evaluated f 1; g1 and a numerically. The solution in series form is obtained in one step,
without shooting for the missing boundary conditions. By calculating up to N ¼ 5;
we get:

f ðjÞ ¼ f 1j2
f 2

1 þ g2
1

aþ 2
j 2 þ

3f 1 f 2
1 þ g2

1

� �
2ðaþ 2Þðaþ 3Þ

j 3

2
f 2

1 þ g2
1

� �
g2

1 þ ð8aþ 17Þf 2
1

h i
3ðaþ 2Þ2ðaþ 3Þðaþ 4Þ

j 4

þ
5f 1 f 2

1 þ g2
1

� �
ðaþ 13Þg2

1 þ ð25aþ 61Þf 2
1

h i
24ðaþ 2Þ2ðaþ 3Þðaþ 4Þðaþ 5Þ

j 5 þ · · · ð20Þ

gðjÞ ¼ g1j2
g1 f 2

1 þ g2
1

� �
2ðaþ 2Þðaþ 3Þ

j 3 þ
4f 1g1 f 2

1 þ g2
1

� �
3ðaþ 2Þðaþ 3Þðaþ 4Þ

j 4

2
g1 f 2

1 þ g2
1

� �
ðaþ 5Þg2

1 þ ð25aþ 53Þf 2
1

h i
8ðaþ 2Þ2ðaþ 3Þðaþ 4Þðaþ 5Þ

j 5 þ · · · ð21Þ
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hðjÞ ¼ a2 1 þ 2f 1j2
f 2

1 þ g2
1

aþ 2
j 2 þ

f 1 f 2
1 þ g2

1

� �
ðaþ 2Þðaþ 3Þ

j 3

2
f 2

1 þ g2
1

� �
g2

1 þ ð8aþ 17Þf 2
1

h i
6ðaþ 2Þ2ðaþ 3Þðaþ 4Þ

j 4

þ
f 1 f 2

1 þ g2
1

� �
ðaþ 13Þg2

1 þ ð25aþ 61Þf 2
1

h i
12ðaþ 2Þ2ðaþ 3Þðaþ 4Þðaþ 5Þ

j 5 þ · · · ð22Þ

The solutions are given here up to Oðj 5Þ; however, one can easily obtain terms of
higher order. After evaluating f ðjÞ; gðjÞ and hðjÞ; the original functions FðzÞ; GðzÞ and
H ðzÞ are obtained by using equations (13) and (14). Then, by using equations (10) and
(11), TðzÞ is evaluated by numerical integration. If necessary, one can obtain PðzÞ by
integrating equation (7(c)) as follows:

PðzÞ2 P0 ¼ H 2=2 2 H 0 ð23Þ

5. Results and discussion
In the calculations carried out, to assure a 6-digits of accuracy, it is sufficient to take
N ¼ 35: As an example, convergence of a for g ¼ 0 and b ¼ 0 versus N is given in
Table I.

The primary flow field parameters F 0ð0Þ; G0ð0Þ and H ð1Þ for several values of the
slip factor g and for b ¼ 0 are given in Table II with comparison to that in Miklavcic
and Wang (2004). The results are also reported for b ¼ 1 in Table III with comparison
to those of Andersson and Korte (2002) for g ¼ 0: The variation of other important

N 6 10 15 20 25 30 35

a 2.458276 2.432815 2.420212 2.421829 2.421702 2.421710 2.421710

Table I.
Convergence of a for
g ¼ 0 and b ¼ 0

F 0ð0Þ 2G0ð0Þ 2H ð1Þ
g Present Miklavcic Present Miklavcic Present Miklavcic

0.0 0.510232619 0.51023262 0.615922014 0.61592201 0.88447411 0.8844742
0.1 0.421453639 0.42145364 0.605835241 0.60583524 0.88136423 0.8813642
0.2 0.352581007 0.35258101 0.583676764 0.58367676 0.87395729 0.8739572
0.5 0.223848209 0.22384821 0.502809702 0.50280970 0.84239263 0.8423926
1.0 0.127923645 0.12792364 0.394927595 0.39492760 0.78947720 0.7894772
2.0 0.061010098 0.06101010 0.273370132 0.27337013 0.71031331 0.7103134
5.0 0.018588527 0.01858853 0.143388209 0.14338821 0.58376463 0.5837646

10.0 0.006812558 0.00681256 0.081030089 0.08103009 0.48758465 0.4875846
20.0 0.002361594 0.00236159 0.043788462 0.04378846 0.39997581 0.3999758

Table II.
Variation of the flow field
parameters due to g for
b ¼ 0 (n ¼ 60)
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parameters T 0ð0Þ; f 1; g1 and a with the slip factor g are given in Tables III and V for
b ¼ 0 and b ¼ 1; respectively.

For these calculations we took Pr ¼ 0:71; which is the value of Prandtl number for
air. By continuing the same procedure, the thermal field can be computed for different
Prandtl numbers. One can deduce from equation (23) that Pð1Þ is related to the axial
velocity at infinity as Pð1Þ2 P0 ¼ H ð1Þ2=2 2 2Fð0Þ: If necessary, one can obtain
Pð1Þ by using the values given in Tables II and IV for H ð1Þ and F 0ð0Þ; knowing that
the slip velocity on the surface is related to the skin friction as Fð0Þ ¼ gF 0ð0Þ (Table V).

g 2T 0ð0Þ f 1 g1 a

0.0 0.325860639 1.182244779 1.536776526 2.421710504
0.1 0.333496950 1.096913972 1.422174786 2.414190968
0.2 0.336780900 1.038943086 1.339504645 2.396375269
0.5 0.334652873 0.942790947 1.191324451 2.321915819
1.0 0.320432993 0.875499819 1.076800290 2.202244788
2.0 0.292997980 0.825074692 0.983003210 2.034628635
5.0 0.244046155 0.783417800 0.898674732 1.792774875

10.0 0.205049245 0.765039980 0.858998126 1.628378368
20.0 0.168829630 0.753582150 0.833355187 1.491788616

Table IV.
Variation of T 0ð0Þ; f 1 and
g1 with respect to g for

b ¼ 0 (n ¼ 60)

F 0ð0Þ 2G0ð0Þ 2H ð1Þ
g Present Andersson Present Andersson Present Andersson

0.0 0.3092580 0.3093 1.0690534 1.0691 0.2533143 0.2533
0.1 0.2275672 – 0.9730532 – 0.2478159 –
0.2 0.1727037 – 0.8881437 – 0.2360560 –
0.5 0.0869394 – 0.6979959 – 0.1938269 –
1.0 0.0370585 – 0.5130955 – 0.1376430 –
2.0 0.0113924 – 0.3366878 – 0.0767438 –
5.0 0.0014983 – 0.1669337 – 0.0237061 –

10.0 0.0002479 – 0.0909351 – 0.0076573 –
20.0 0.0000359 – 0.0476211 – 0.0021867 –

Table III.
Variation of the flow field

parameters due to g for
b ¼ 1 (n ¼ 40)

g 2T 0ð0Þ f 1 g1 a

0.0 0.1466260 0.2295591 0.8003710 3.1100731
0.1 0.1454969 0.2059028 0.7224999 3.1004750
0.2 0.1404346 0.1861206 0.6633721 3.0801221
0.5 0.1192323 0.1419627 0.5438620 3.0089722
1.0 0.0880740 0.0969619 0.4278653 2.9188418
2.0 0.0515184 0.0529581 0.3037245 2.8266939
5.0 0.0202761 0.0161282 0.1616369 2.7508867

10.0 0.0128822 0.0051699 0.0899881 2.7287291
20.0 0.0107770 0.0014684 0.0474785 2.7212572

Table V.
Variation of T 0ð0Þ; f 1 and
g1 with respect to g for

b ¼ 1 (n ¼ 40)
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As it is seen from Figure 1, the wall gradient in radial direction monotonically
decreases with b and g.

Figure 2 shows that as g increases, the magnitude of the velocity gradient in
circumferential direction decreases. This is a consequence that the fluid cannot stick on
the rotating disk; therefore, the slipping fluid decreases the surface skin friction. Since
GðzÞ inevitably has to change from Gð0Þ at the surface of the disk to zero at infinity, an
increase in b, which has a thinning effect on the circumferential boundary layer, leads
to an increase of the magnitude of G0ð0Þ; for any value of g.

Figure 3 shows that, while the heat transfer from the disk, which is directly related
to the magnitude of the dimensionless temperature gradient at the surface,
monotonically decreases with b, the variation of T 0ð0Þ with the slip factor is more
subtle. For b – 0; the magnitude of T 0ð0Þ monotonically decreases with g and for
b ¼ 0 it increases up to g ¼ 0:2836 taking its maximum value, which is T 0ð0Þ ¼
20:337462 and then decreases. We can state that the maximum cooling of the rotating

Figure 1.
Variation of F 0ð0Þ with g
for several values of b

Figure 2.
Variation of G0ð0Þ with g
for several values of b

Figure 3.
Variation of T 0ð0Þ with g
for several values of b
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disk is reached at this value of the slip factor if the ambient fluid is colder than the
rotating disk surface.

The inflow rate at infinity, as one can see from Figure 4, decreases both with the slip
factor and the magnetic interaction number. This is quite natural since the radially
outwards boundary layer is fed by the axial flow at infinity.

The highest value of the radial velocity on the surface is 0.128440 and this value is
reached at g ¼ 1:1586 and b ¼ 0: This value of the slip factor may be necessary and
important in practical applications, when the aim is to use the disk as a centrifugal fan
(Figure 5). As one can see from Figure 6, the maximum circumferential velocity on the
surface is at g ¼ 0; where the no-slip condition is present. This is a result of the
negative gradient of the circumferential velocity in z direction above the disk.
Variations of the radial velocity F and the temperature T for several values of g and b

are given in Figures 7 and 8.

Figure 4.
Variation of H ð1Þ with g

for several values of b

Figure 5.
Variation of Fð0Þ with g

for several values of b

Figure 6.
Variation of Gð0Þ with g

for several values of b
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In Figure 7, the decreasing effect of the slip factor g on radial boundary layer can be
seen. In the limit case g!1; when the flow is entirely potential, the rotating disk has
no effect to rotate the fluid particles, therefore, the fluid is at rest. This is quite natural,
since the rotating disk acts like a centrifugal fan and owing to the centrifugal forces,
throws out the fluid that sticks to it. A fluid stream compensates this thrown fluid,
which is in the axial direction. When g increases, less amount of fluid can stick to the

Figure 8.
Variation of temperature
for several values of g and
b, Pr ¼ 0:71

Figure 7.
Radial component of the
velocity for several values
of g and b
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disk and the rotating disk loses its efficiency to transfer its circumferential momentum
to the fluid particles. The fluid loses circumferential velocity, leading the centrifugal
force that throws the fluid outwards to decrease. When the disk throws less fluid
outwards, less amount of fluid stream in the axial direction exists.

The effect of the magnetic field is to reduce, and eventually suppress the radial
outflow. An accompanying reduction of the axial flow together with a thinning of the
circumferential boundary layer, which leads to an increase in the wall gradient that
causes in an increase of the torque required to turn the disk, can be observed.

In Figure 8, one can observe that as the slip factor increases, TðzÞ tends to vary
linearly. This is a result of the fact that as g increases, H ðzÞ decreases and in the limit
case of g!1; H ¼ 0 can be taken. From equation (8), this leads to the following case:

g!1
limT 00ðzÞ ¼ 0 ð24Þ

where the solution is linear and for large values of g, it can be approximated as:
TðzÞ ø T 0ð0Þzþ 1 to ease the computations. Also the magnetic interaction number b
and the slip factor g have thickening effects on the thermal boundary layer.

6. Conclusion
In this study, the magnetic effects to an electrically conducting fluid in slip regime are
studied for the flow field on a single rotating disk with heat transfer. A coordinate
stretching method is used to solve the problem in a bounded domain and DTM, which
is a versatile tool for solving non-linear partial or ordinary differential equations, is
used as the solution technique. The flow field variables are obtained in series form. The
combined effects of the slip factor g and the magnetic interaction number b are studied
in detail.
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